首页 > 公需科目
题目内容 (请给出正确答案)
[主观题]

设α是欧氏空间V中的一个非零向量,α1,α2,···,αp是V中p个向量,满足证明:1)α1,α≇

设α是欧氏空间V中的一个非零向量,α1,α2,···,αp是V中p个向量,满足

设α是欧氏空间V中的一个非零向量,α1,α2,···,αp是V中p个向量,满足证明:1)α1,α≇设

证明:

1)α1,α2,···,αp线性无关;

2)n维欧氏空间中最多有n+1个向量,使其两两夹角都大于π/2。

查看答案
答案
收藏
如果结果不匹配,请 联系老师 获取答案
您可能会需要:
您的账号:,可能还需要:
您的账号:
发送账号密码至手机
发送
安装优题宝APP,拍照搜题省时又省心!
更多“设α是欧氏空间V中的一个非零向量,α1,α2,···,αp是…”相关的问题
第1题
设V是一个n维欧氏空间,它的内积为(α,β),对V中确定的向量α,定义V上一个函数α*:α*(β)=(α,β)。1)证明:α*是V上线性函数;2)证明:V到V*的映射:α→α*是V到V*的一个同构映射。(在这个同构下,欧氏空间可看成自身的对偶空间。)

点击查看答案
第2题
设α1,α2,···,αm和β1,β2,···,βm是n维欧氏空间V中两个向量组,证明存在
一正交变换使的充分必要条件为

点击查看答案
第3题
n维欧氏空间V的一个线性变换σ说是反对称的,如果对于任意向量a,β∈V。证明:(i)反对称变换关于V的

n维欧氏空间V的一个线性变换σ说是反对称的,如果对于任意向量a,β∈V。

证明:

(i)反对称变换关于V的任意规范正交基的矩阵都是反对称的实矩阵(满足条件AT=-A的矩阵叫作反对称矩阵);

(ii)反之,如果线性变换σ关于V的某一规范正交基的矩阵是反对称的,那么σ一定是反对称线性变换;

(iii)反对称实矩阵的特征根或都是零,或者是纯虚数。

点击查看答案
第4题
设V是对于非退化对称双线性函数f(α,β)的n维准欧氏空间,V的一组基ε1,...,εn如果满足则

设V是对于非退化对称双线性函数f(α,β)的n维准欧氏空间,V的一组基ε1,...,εn如果满足

则称为V的一组正交基。如果V上的线性变换满足

则称为V的一个准正交变换。试证:

1)准正交变换是可逆的,且逆变换也是准正交变换;

2)准正交变换的乘积仍是准正交变换;

3)准正交变换的特征向量α,若满足f(α,α)≠0,则其特征值等于1或-1;

4)准正交变换在正交基下的矩阵T满足

点击查看答案
第5题
设{α1,α2,···,αn}是欧氏空间V的一个规范正交组,证明对于任意ξ∈V,以下不等式成立:

点击查看答案
第6题
设V1,V2,...,Vs是线性空间V的s个非平凡的子空间,证明:V中至少有一向量不属于V1,V2,...,Vs中任何一个。

点击查看答案
第7题
令V是实数域R上一个三维向量空间,σ是V的一个线性变换。它关于V的某一个基的矩阵是(i)求出σ的最

令V是实数域R上一个三维向量空间,σ是V的一个线性变换。它关于V的某一个基的矩阵是

(i)求出σ的最小多项式p(x),并把p(x)在R[x]内分解为两个最高次项系数是1的不可约多项式p1(x)与p2(x)的乘积;

(ii)令Wi={ξ∈V|pi(σ)ξ=0},i=1,2。证明,Wi是σ的不变子空间,并且V=W1⊕W2;

(iii)在每一子空间Wi中选取一个基,凑成V的一个基,使得σ关于这个基的矩阵里只出现三个非零元素。

点击查看答案
第8题
设V是一个线性空间,f1,f2,...,fs是V*中非零向量,试证,存在α∈V,使

点击查看答案
第9题
设α1,α2,···,αn是欧氏空间的n个向量,行列式叫作α1,...,αn的格拉姆(Gram)

设α1,α2,···,αn是欧氏空间的n个向量,行列式

叫作α1,...,αn的格拉姆(Gram)行列式,证明G(α1,...,αn)=0当且仅当α1,...,αn线性相关。

点击查看答案
第10题
设σ是n维欧氏空间V的一个正交交换。证明:如果V的一个子空间W在σ之下不变,那么W的正交补W也在σ之下不变。

点击查看答案
退出 登录/注册
发送账号至手机
密码将被重置
获取验证码
发送
温馨提示
该问题答案仅针对搜题卡用户开放,请点击购买搜题卡。
马上购买搜题卡
我已购买搜题卡, 登录账号 继续查看答案
重置密码
确认修改