首页 > 公需科目
题目内容 (请给出正确答案)
[主观题]

设F上三维向量空间的线性变换σ关于基{α1,α2,α3}的矩阵是。求σ关于基的矩阵。设ξ=2α≇

设F上三维向量空间的线性变换σ关于基{α1,α2,α3}的矩阵是设F上三维向量空间的线性变换σ关于基{α1,α2,α3}的矩阵是。求σ关于基的矩阵。设ξ=2α≇设F。求σ关于基

设F上三维向量空间的线性变换σ关于基{α1,α2,α3}的矩阵是。求σ关于基的矩阵。设ξ=2α≇设F

的矩阵。设ξ=2α123。求σ(ξ)关于基β1,β2,β3的坐标。

查看答案
答案
收藏
如果结果不匹配,请 联系老师 获取答案
您可能会需要:
您的账号:,可能还需要:
您的账号:
发送账号密码至手机
发送
安装优题宝APP,拍照搜题省时又省心!
更多“设F上三维向量空间的线性变换σ关于基{α1,α2,α3}的矩…”相关的问题
第1题
令V是实数域R上一个三维向量空间,σ是V的一个线性变换。它关于V的某一个基的矩阵是(i)求出σ的最

令V是实数域R上一个三维向量空间,σ是V的一个线性变换。它关于V的某一个基的矩阵是

(i)求出σ的最小多项式p(x),并把p(x)在R[x]内分解为两个最高次项系数是1的不可约多项式p1(x)与p2(x)的乘积;

(ii)令Wi={ξ∈V|pi(σ)ξ=0},i=1,2。证明,Wi是σ的不变子空间,并且V=W1⊕W2;

(iii)在每一子空间Wi中选取一个基,凑成V的一个基,使得σ关于这个基的矩阵里只出现三个非零元素。

点击查看答案
第2题
n维欧氏空间V的一个线性变换σ说是反对称的,如果对于任意向量a,β∈V。证明:(i)反对称变换关于V的

n维欧氏空间V的一个线性变换σ说是反对称的,如果对于任意向量a,β∈V。

证明:

(i)反对称变换关于V的任意规范正交基的矩阵都是反对称的实矩阵(满足条件AT=-A的矩阵叫作反对称矩阵);

(ii)反之,如果线性变换σ关于V的某一规范正交基的矩阵是反对称的,那么σ一定是反对称线性变换;

(iii)反对称实矩阵的特征根或都是零,或者是纯虚数。

点击查看答案
第3题
设V是对于非退化对称双线性函数f(α,β)的n维准欧氏空间,V的一组基ε1,...,εn如果满足则

设V是对于非退化对称双线性函数f(α,β)的n维准欧氏空间,V的一组基ε1,...,εn如果满足

则称为V的一组正交基。如果V上的线性变换满足

则称为V的一个准正交变换。试证:

1)准正交变换是可逆的,且逆变换也是准正交变换;

2)准正交变换的乘积仍是准正交变换;

3)准正交变换的特征向量α,若满足f(α,α)≠0,则其特征值等于1或-1;

4)准正交变换在正交基下的矩阵T满足

点击查看答案
第4题
令σ是数域F上向量空间V的一个线性变换,并且满足条件σ2=σ。证明:(i)Ker(σ)=(ξ-σ(ξ)|ξ∈V};(ii)V=Ker(σ)⊕Im(σ);(iii)如果τ是V的一个线性变换,那么Ker(σ)和Im(σ)都在τ之下不变的充要条件是στ=τσ。

点击查看答案
第5题
设ε1,ε2,...,εn是线性空间V的一组基,是V上的线性变换,证明:可逆当且仅当线性无关。

设ε1,ε2,...,εn是线性空间V的一组基,是V上的线性变换,证明:可逆当且仅当线性无关。

点击查看答案
第6题
数域F上n维向量空间V的一个线性变换σ叫作幂零的,如果存在一个正整数m使σm=θ。证明:(i)σ是幂零变换当且仅当它的特征多项式的根都是零;(ii)如果一个幂零变换σ可以对角化,那么σ一定是零变换。

点击查看答案
第7题
设σ,τ是向量空间V的线性变换,且στ=τσ。证明Im(σ)和Ker(σ)都在τ之下不变。

点击查看答案
第8题
令Fn[x]表示数域F上一切次数≤n的多项式连同零多项式所组成的向量空间。这个向量空间的维数
是几?下列向量组是不是F3[x]的基:

点击查看答案
第9题
设T为n维欧氏空间Rn的一个线性变换,T在基{α1,α2,···,αn}下的矩阵为A。证明:T为对称变换的充要条件是ATG=GA,其中G为基{α1,α2,···,αn}的格拉姆矩阵。

点击查看答案
第10题
设是线性空间V上的线性变换,如果,但,求证线性无关。

是线性空间V上的线性变换,如果,但,求证线性无关。

点击查看答案
退出 登录/注册
发送账号至手机
获取验证码
发送
温馨提示
该问题答案仅针对搜题卡用户开放,请点击购买搜题卡。
马上购买搜题卡
我已购买搜题卡, 登录账号 继续查看答案
重置密码
确认修改