首页 > 继续教育
题目内容 (请给出正确答案)
[主观题]

令V是实数域R上一个三维向量空间,σ是V的一个线性变换。它关于V的某一个基的矩阵是(i)求出σ的最

令V是实数域R上一个三维向量空间,σ是V的一个线性变换。它关于V的某一个基的矩阵是

令V是实数域R上一个三维向量空间,σ是V的一个线性变换。它关于V的某一个基的矩阵是(i)求出σ的最令

(i)求出σ的最小多项式p(x),并把p(x)在R[x]内分解为两个最高次项系数是1的不可约多项式p1(x)与p2(x)的乘积;

(ii)令Wi={ξ∈V|pi(σ)ξ=0},i=1,2。证明,Wi是σ的不变子空间,并且V=W1⊕W2;

(iii)在每一子空间Wi中选取一个基,凑成V的一个基,使得σ关于这个基的矩阵里只出现三个非零元素。

查看答案
答案
收藏
如果结果不匹配,请 联系老师 获取答案
您可能会需要:
您的账号:,可能还需要:
您的账号:
发送账号密码至手机
发送
安装优题宝APP,拍照搜题省时又省心!
更多“令V是实数域R上一个三维向量空间,σ是V的一个线性变换。它关…”相关的问题
第1题
令V=Mn(C)是复数域上全体n阶矩阵所组成的n2维向量空间,令A是任意一个n阶复矩阵。如下

令V=Mn(C)是复数域上全体n阶矩阵所组成的n2维向量空间,令A是任意一个n阶复矩阵。如下地定义V的一个线性变换αA:V→V:对于任意X∈V=Mn(C),αA(X)=AX-AX。

(i)证明,r是非负整数,由此推出,如果A是幂零矩阵,那么αA是V的幂零变换;

(ii)如果A=D+N是A的若尔当分解,其中D是A的可对角化部分,N是幂零部分,那么αD和αN分别是线性变换αA的若尔当分解。

点击查看答案
第2题
令σ是数域F上向量空间V的一个线性变换,并且满足条件σ2=σ。证明:(i)Ker(σ)=(ξ-σ(ξ)|ξ∈V};(ii)V=Ker(σ)⊕Im(σ);(iii)如果τ是V的一个线性变换,那么Ker(σ)和Im(σ)都在τ之下不变的充要条件是στ=τσ。

点击查看答案
第3题
设V是一个n维欧氏空间,它的内积为(α,β),对V中确定的向量α,定义V上一个函数α*:α*(β)=(α,β)。1)证明:α*是V上线性函数;2)证明:V到V*的映射:α→α*是V到V*的一个同构映射。(在这个同构下,欧氏空间可看成自身的对偶空间。)

点击查看答案
第4题
V是数域P上一个3维线性空间,ε1,ε2,ε3是它的一组基,试找出一个线性函数f,使

点击查看答案
第5题
设V是数域F上一个有限维内积空间,配备了一个内积f,证明以下两条件等价:(ii)f关于V的任意基的格

设V是数域F上一个有限维内积空间,配备了一个内积f,证明以下两条件等价:

(ii)f关于V的任意基的格拉姆矩阵非奇异。

满足上述条件的内积叫作非退化的。

点击查看答案
第6题
证明,在数域F上向量空间V里,以下算律成立:(i)a(α-β)=aα-aβ;(ii)(a-b)α=aα-bα,这里a,b∈F,α,β∈V。

点击查看答案
第7题
向量空间V={(x,0,-x)^T|x∈R}的维数等于()

A.0

B.1

C.2

D.3

点击查看答案
第8题
数域F上n维向量空间V的一个线性变换σ叫作幂零的,如果存在一个正整数m使σm=θ。证明:(i)σ是幂零变换当且仅当它的特征多项式的根都是零;(ii)如果一个幂零变换σ可以对角化,那么σ一定是零变换。

点击查看答案
第9题
令Fn[x]表示数域F上一切次数≤n的多项式连同零多项式所组成的向量空间。这个向量空间的维数
是几?下列向量组是不是F3[x]的基:

点击查看答案
第10题
检验以下集合对于所指的线性运算是否构成实数域上的线性空间:1)次数等于n(n≥1)的实系数多项式

检验以下集合对于所指的线性运算是否构成实数域上的线性空间:

1)次数等于n(n≥1)的实系数多项式的全体,对于多项式的加法和数量乘法;

2)设A是一个nxn实矩阵,A的实系数多项式f(A)的全体,对于矩阵的加法和数量乘法;

3)全体n级实对称(反称,上三角形)矩阵,对于矩阵的加法和数量乘法;

4)平面上不平行于某一向量的全部向量所成的集合,对于向量的加法和数量乘法;

5)全体实数的二元数列,对于下面定义的运算:

6)平面上全体向量,对于通常的加法和如下定义的数量乘法:

7)集合与加法同6),数量乘法定义为

8)全体正实数R+,加法与数量乘法定义为

点击查看答案
退出 登录/注册
发送账号至手机
获取验证码
发送
温馨提示
该问题答案仅针对搜题卡用户开放,请点击购买搜题卡。
马上购买搜题卡
我已购买搜题卡, 登录账号 继续查看答案
重置密码
确认修改